leetcode 315. Count of Smaller Numbers After Self 两种思路
说来惭愧,已经四个月没有切 leetcode 上的题目了。
虽然工作中很少(几乎)没有用到什么高级算法,数据结构,但是我一直坚信 "任何语言都会过时,只有数据结构和算法才能永恒"。leetcode 上的题目,截止目前切了 137 道(all solutions),只写过 6 篇题解,所以我会写题解的一般都是自认为还蛮有意思或者蛮典型的题目,就比如这道题。
题目链接:Count of Smaller Numbers After Self
这道题很有意思,给出一个数组,返回一个新的数组,新数组每个元素表示原数组中对应位置右边比该元素小的元素个数。听不懂了吧?举个栗子:
数组 nums = [5, 2, 6, 1]5 右边有 2 个元素比 5 小(2 和 1)2 右边有 1 个元素比 2 小 (1)6 右边有 1 个元素比 6 小(1)1 右边有 0 个元素比 1 小
所以返回数组 [2, 1, 1, 0]
leetcode 有一点不大好,就是不给数据大小范围,所以我相信绝大多数人会和我一样,先写个两层循环的 O(n^2) 代码,一提交,超时了,它给出超时数据,数组长度 20000+,O(n^2) 复杂度都好几亿了!
来分析下这道题,需要求右边比该数小的数的个数,所以有一点很明确,我们需要从右往左遍历数组。还是以上面的数组举例,也就是说当我们遍历到 index=0 时,需要知道现在已经有 1, 2, 6 三个数据了,我们需要一种数据结构,能保存 1, 2, 6, 同时之后能把 5 插进去。
首先映入脑海的是树状数组(直接把此题搞复杂了)。(不了解树状数组的可以参考我之前的文章 【前端也要学点数据结构】 神奇的树状数组 以及 【前端也要学点数据结构】神奇的树状数组的三大应用)
和改点求段很像,求右边比之小的数量,是为 "求段",求完后把该点插进入,是为 "改点"。但是我们还需要改变传统树状数组求解的思路,把数组元素大小当做下标,而不是元素的索引位置,比如说 A[1] 其实是表示 1 的数量,而 C[2] 其实是表示 1 和 2 的数量和,所以 "改点" 的时候增量都是 1,有种 "大材小用" 之感。更蛋疼的是,由于不知道数据大小,还需要进行离散化。
目标是将 [5, 2, 6, 1] 转换成 [3, 2, 4, 1] 这样,然后再用树状数组求解。
离散化,需要先排序,再离散,最后再排回来:
var arr = [] , len = nums.length;// array to object// 增加 index 属性,以便离散化for (var i = 0; i < len; i++) { var tmp = {}; tmp.index = i; tmp.value = nums[i]; arr.push(tmp);}arr.sort(function(a, b) { return a.value - b.value;});// 离散化var maxn = 1;for (var i = 0; i < len; i++) { if (!i) { arr[i].nValue = maxn; } else { arr[i].nValue = arr[i].value === arr[i - 1].value ? maxn : ++maxn; }}arr.sort(function(a, b) { return a.index - b.index;});
树状数组求解:
// 树状数组var ans = [] , sum = [];for (var i = 0; i <= maxn; i++) sum[i] = 0;function lowbit(x) { return x & (-x); }function update(index, val) { for (var i = index; i <= maxn; i += lowbit(i)) sum[i] += val;} function getSum(index) { var ans = 0; for (var i = index; i; i -= lowbit(i)) ans += sum[i]; return ans;}for (var i = len - 1; i >= 0; i--) { var nValue = arr[i].nValue; ans.unshift(getSum(nValue - 1)); update(nValue, 1);}
树状数组部分就是简单的更新和查询了。完整代码可以参考 树状数组解法。
虽然 Accept 了,但是耗时 300ms+,仅击败了 35% 的 Javascript solutions,一看最佳答案在 200ms 左右,开始怀疑是不是有 O(n) 的解法,但是思忖良久也没有想到,想想是不是 4 次的 nlogn 耗时巨大(离散两次 sort,树状数组查询和更新各一次)。
还是拿 [5, 2, 6, 1] 举例,当枚举到 5 时,要求 [1, 2, 6] 中小于 5 的数量,同时之后又可以把 5 插进入,维护一个二叉检索树(BST)似乎是可行的?不不不,这不是赤裸裸的二分查找吗!!!
二分查找 [1, 2, 6] 中小于 5 的个数,查完之后把 5 塞进数组,维护数组的单调性,而且 Javascript 正好有 splice() 方法可以把一个数字插入数组。
二分部分返回小于 target 的数量,同时也是插入 target 的位置(index):
// binary searchfunction bSearch(target, a) { var start = 0 , end = a.length - 1; while(start <= end) { var mid = ~~((start + end) >> 1); if (a[mid] >= target) end = mid - 1; else if (a[mid] < target) start = mid + 1; } return start;}
完整代码可以参考 二分查找解法
但是遗憾的是,尽管从 4 次 nlogn 下降到了 1 次 nlongn,但是耗时不降反升了,究其原因,我觉得是 unshift() 方法和 splice() 方法的大量调用,你觉得呢?
个人暂时没有想出 O(n) 的线性解法(可能就是没有),但是实实在在有 200ms 的 Javascript solution,难道是 BST 么?欢迎有想法的同学跟我交流探讨。